Már kísérleteznek a szinte mágneses tér nélküli magyarországi laborban

2024. július 10. – 13:19

Már kísérleteznek a szinte mágneses tér nélküli magyarországi laborban
A Mágneses Nulltér Laboratórium építés közben – Fotó: ZBL

Másolás

Vágólapra másolva

Megkezdődtek a kísérleti mérések a Mágneses Nulltér Laboratóriumban – írja az MTI. A létesítményt a HUN-REN soproni Földfizikai és Űrtudományi Kutatóintézet (FI) és a HUN-REN Wigner FK közös projektje során alakították ki.

A mágneses tér hatásait a világon ebben a formában egyedülálló módszerrel kizáró labor űrben használható műszerek fejlesztésében, orvosdiagnosztikai innovációkban, de akár az űrhajósok felkészítésében is segíthet.

A Mágneses Nulltér Laboratórium (Zero Magnetic Field Lab, ZBL) célja, hogy egy kisebb szobányi térfogatban nulla értékhez közeli, 1 nanotesla alatti mágneses teret biztosítson. Ahhoz, hogy ezt létre lehessen hozni, a meglévő mágneses mezővel megegyező erősségű, de azzal ellentétes irányú teret kell előállítani.

A magyar labor abban egyedülálló a világon, hogy működéséhez egy kettős mágnesestér-csillapító rendszert alakítottak ki, külső referencia geomágneses idősor felhasználásával. A duális rendszer egyik komponense az aktív kompenzáló rendszer, a másik pedig a passzív árnyékoló kamra.

„A földi mágneses tér a bolygónk külső magjában folyékony állapotban lévő fém áramlása okozta dinamóhatás révén marad fenn. Ehhez társul a jóval kisebb léptékű, de dinamikusan változó komponens, a Föld ionizált felső légkörében folyó áramok mágneses tere”

– magyarázta Lemperger István, az FI Geomágnesség-Geoelektromosság kutatócsoportjának vezetője.

A kettő összegeként jön létre a felszíni geomágneses tér. Az aktív kompenzáló rendszer másodperces gyakorisággal frissítve állítja elő az ezzel ellentétes irányú, de megegyező nagyságú kompenzáló teret.

Ezért a gyors változás pontos nyomon követése rendkívül fontos, ezért is van szükség ilyen megfigyelőállomásra, mint amilyen a fertőbozi Széchenyi István Geofizikai Obszervatóriumban működik.

A nulla mágneses tér megközelítése nemcsak a nullteret igénylő vizsgálatok számára szükséges, hanem a kontrollált terek előállítása is csak egy nagy pontosságú nulltérre szuperponálva hozható létre. Ilyen kontrollált terek szükségesek például a műholdas, vagy felszíni alkalmazásokra fejlesztett mágnesestér-mérő eszközök, a magnetométerek kalibrálásához.

A tájékoztatás szerint a laboratórium finomhangolása most zajlik, ennek része a kamra lemágnesezési folyamata. A laboratóriumban és a kamra környezetében már jelenleg is folynak kísérleti mérések a Wigner FK és az FI munkatársai részvételével, amelyek célja a bonyolult mágneses térszerkezet feltérképezése, a duális rendszer viselkedésének pontos megértése. A Wigner FK kutatói egy mágneses teret mérő, nagyjából gyufásdoboz nagyságú SERF-magnetométer fejlesztésén dolgoznak. E technológia alkalmazása előtt ugyanezt a felbontást korábban a felszínen csak egy szobányi méretű berendezés tudta biztosítani.

Mint írták, a biofizikai kísérletek sem szorulnak ki Fertőbozról: A Soproni Egyetemen egy PhD-munka keretében növényi csírák növekedési ütemét, orientációját, tápanyag-felszívódását vizsgálják majd geomágneses tértől mentes környezetben.

Emellett az Eszterházy Károly Katolikus Egyetem kutatói pedig arra kíváncsiak, hogyan változnak az ember kognitív képességei zéróközeli mágneses térben. A kísérlet során a vizsgált személyek irányított feladatmegoldást hajtanak végre, miközben a kutatók EEG készülékkel figyelik az agyi aktivitás következtében kialakuló elektromos potenciál eloszlását. A vizsgálatot speciális, szemmozgáskövető hardver- és szoftverrendszer egészíti ki, az összesített adatsorok együttes feldolgozása révén olyan új eredmények születhetnek, amik az asztronauták felkészítése során is hasznosíthatóak lesznek.

A laboratórium orvosdiagnosztikai eszközök, például a magnetoenkefalográf igen drága alkatrészeinek olcsóbb előállításához szükséges technológiai fejlesztés otthona is lehet.

Kedvenceink
Partnereinktől
Kövess minket Facebookon is!